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In the spirit of recent work on contextual recognition and estimation, we present a method for estimating the
pose of human hands, employing information about the shape of the object in the hand. Despite the fact that
most applications of human hand tracking involve grasping and manipulation of objects, the majority of
methods in the literature assume a free hand, isolated from the surrounding environment. Occlusion of the
hand from grasped objects does in fact often pose a severe challenge to the estimation of hand pose. In the
presented method, object occlusion is not only compensated for, it contributes to the pose estimation in a
contextual fashion; this without an explicit model of object shape. Our hand tracking method is
non-parametric, performing a nearest neighbor search in a large database (.. entries) of hand poses with
and without grasped objects. The system that operates in real time, is robust to self occlusions, object occlu-
sions and segmentation errors, and provides full hand pose reconstruction from monocular video. Temporal
consistency in hand pose is taken into account, without explicitly tracking the hand in the high-dim pose
space. Experiments show the non-parametric method to outperform other state of the art regression
methods, while operating at a significantly lower computational cost than comparable model-based hand
tracking methods.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Human pose estimation is an important task for applications such
as teleoperation and gaming, biometrics and prosthesis design, and
human–robot interaction. However, accurate 3D reconstruction of
human motion from images and video is a highly non-trivial problem,
characterized byhigh-dimensional state spaces, fast and non-linearmo-
tion, and highly flexible model structures [2]. All this is applicable to
hand reconstruction aswell as full body reconstruction [1,3–6]. Howev-
er, while a full body pose estimator encounters additional challenges
from e.g. clothing, a hand pose estimator has to deal with other but
equally demanding issues: similarity in appearance between the differ-
ent parts of the hand (e.g. different fingers), and large self occlusion.

An important aspect of hand pose estimation is that humans are fre-
quently interacting with objects. This is the case in the majority of the
application areas mentioned above. The grasped object is often occlud-
ing a large part of the hand— for a plausible example, see Fig. 1, left.
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Despite this, researchers have up to now almost exclusively fo-
cused on estimating the pose of hands in isolation from the surround-
ing scene, e.g. [7–11]. As illustrated in Fig. 1, top and middle, this will
be inadequate if the observed hand interacts closely with objects dur-
ing estimation.

Object–contextual hand pose estimation has been addressed in a
generative manner in two recent works. In [12] the authors show
that the hand pose can be reconstructed robustly despite the object
occlusion. In [13], this is taken one step further, with explicit recon-
struction of the object in 3D. By enforcing physical constraints on
the hand pose from the object 3D surface and vice versa, the two
pose estimation processes guide each other.

In contrast to [12,13], we take a discriminative approach to object–
contextual hand pose estimation. The main contribution of this
paper is a method for estimating human hand pose, employing con-
textual information about the shape of the object in the hand. Nei-
ther the hand nor the object is explicitly reconstructed; the hand
and the object are instead modeled together, encoding the correla-
tions between hand pose and object shape in a non-parametric fash-
ion. In spirit of the recent methods for contextual recognition and
estimation, e.g. [3,14,13,6], the object occlusion thereby helps in
the hand pose reconstruction.

There are two reasons for exploring discriminative hand pose estima-
tion with object context. Firstly, while generative estimation approaches
commonly are more accurate, discriminative approaches are commonly
more robust and computationally efficient; this is discussed further in
Section 2. In, e.g., robotic and gaming applications, computational speed
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Fig. 1. Hand pose estimation is traditionally approached in two different manners, either with a generative model (top) or using a discriminative approach (middle). With a gen-
erative model, a model of the hand is maintained, and the image of the model is evaluated against the observed image. In a discriminative approach, the image generation process is
not explicitly modeled; instead, a (parametric or non-parametric) mapping from image to pose is learned from training examples. If objects are not taken into regard in the model-
ing process, both these approaches have significant problems predicting in scenarios where large portions of the hand are occluded. In the generative case (top), there is too little
image evidence to compute an informative likelihood. In the discriminative case (middle), the learned mapping can not take the object occlusion into regard, and will return an
erroneous estimate. Our method (bottom) addresses this problem, by exploiting contextual information in the scene such as object–hand interaction. Due to this we can reliably
predict pose in scenarios with significant occlusion. We would like to point out that our model is not limited to scenarios where an object is being manipulated but equally valid to
estimate a free hand. Objects can also be taken into regard in a generative framework; see Section 2.
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is critical, making discriminative approaches attractive. It is there-
fore valuable to investigate the possibility of estimating hand pose
discriminatively in the context of objects.

Secondly, apart from the purely physical object constraints on the
hand pose [13], there is also a functional correlation between object
shapes and the manner in which they are grasped by a hand [15].
Thus, all physically possible ways of grasping an object are not equally
likely to occur during natural object manipulation activities. Probabil-
ity densities over hand pose conditioned on object shape can be
encoded (in a non-parametric manner) in our discriminative method,
while it is more difficult to encode this information in a generative
model based method.

Fig. 1, bottom row illustrates our approach. In our non-parametric
method, pose estimation essentially corresponds to matching an ob-
served hand to a very large database (.. entries) of hand views. Each
instance in the database describes the articulation and the orientation
of the hand. The configuration of a new (real) image can then be
found using an approximate nearest neighbor approach, taking previ-
ous configurations into account.

In our system, the database contains hands both with and without
grasped objects. The database depicts grasping hands including occlu-
sion from objects with a shape typical for this kind of grasp; this
encodes functional correlations between object shape and the articu-
lation of the grasping hand. The occlusion shape is strongly correlated
to grasping type which further has a strong dependency with the
hand articulation. Since the underlying assumption is that appearance
similarity can be related to similarity in hand pose the object shape
contributes to the hand pose estimation.

In many scenarios it is hard to differentiate between the palm and
the dorsal (“back-hand”) side of the hand. However, the object is
much more likely to occlude the palm rather than the dorsal side of
the hand. This gives insight on why object knowledge can be exploited
in order to resolve the ambiguities typically associated with hand pose
estimation. The rest of the paper is organized as follows: In Section 2
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the relations to related work are discussed. The probabilistic estimation
framework is then outlined in Section 3. The non-parametric hand
model is described in Section 4, while Section 5 describes how inference
is done over this model. Experiments in Section 6 show the non-
parametric method to outperform other state of the art regression
methods. We also show qualitative reconstruction results for a number
of synthetic and real test sequences.

2. Related work

In this section we review related work on object–contextual non-
parametric hand pose estimation. For a general review on human mo-
tion estimation we refer the reader to [2] and for hand pose estimation
in specific to [16]. Further, we will discuss the main difference, both
with respect to accuracy and performance, of generative and discrimi-
native methods in the context of hand pose estimation.

2.1. Object–contextual hand pose estimation

As discussed in the introduction, hand pose estimation can be
addressed in a generative or a discriminativemanner. Object–contextual
hand pose estimation has been addressed in a generative manner in
two recent works. In [12] the authors show how the hand pose can
be reconstructed robustly despite the object occlusion. The hand is
observed using RGB-D image data. To achieve robustness to partial
occlusion of the hand from objects, the hand is modeled as a Markov
random field connecting segments corresponding to the different
bones of the hand skeleton. In this way, the non-occluded segments
can guide the pose estimation of the occluded ones.

In [13], this is taken one step further,with explicit tracking of the ob-
ject in 3D. By enforcing physical constraints on the hand pose from the
object 3D surface and vice versa, the two pose estimation processes
guide each other. A multi-camera system is used to estimate both the
pose of the hand and the object with frame rates between 0.5 and 2 Hz.

2.2. Generative and discriminative pose estimation

As outlined in the introduction inference of hand pose from images
has either beendoneusing generative or discriminativemethods. In con-
trast to [12,13], we take a discriminative approach to object–contextual
hand pose estimation. Over the next paragraphs we outline and dis-
cuss the main difference between generative model-based estima-
tion methods and discriminative regression estimation methods to
motivate our approach.

2.2.1. Accuracy
An important advantage of generative approaches is their (poten-

tial) accuracy, which is only limited by the precision of the hand
model and the computational time available. In contrast, the accuracy
of our discriminative non-parametric approach is fundamentally lim-
ited by the design of the database; it is not computationally tractable,
using any approximation, to add enough new samples to the database
in order to reach the accuracy of a generative tracker.

2.2.2. Initialization and error recovery
However, one disadvantage of generative models is their inherent

local character. In most cases, the posterior distribution over the state
space is highly multi-modal. The estimation procedure must therefore
have a good prior state estimate. This can represent a problem in the
initialization of the method. The tracking procedures in [12,13] were
manually initialized.

Another inherent problem of locality with generative models is the
recovery from errors; when the pose of a frame is wrongly estimated,
subsequent frames will try to adapt such erroneous estimation to new
frames. Since the temporal propagation model by nature is local, the
method will then lose track.
Discriminative methods explore their full precomputed and dis-
crete domain completely and independently every frame. This allows
them to exploremore efficiently broader sets of parameters compared
to generative methods. In our systemwe encourage locality by using a
temporal consistency model, see Section 5.2. However, since the like-
lihood in our model is sampled on a broad range of parameters, hy-
potheses from new parts of the pose space are continuously picked
up, ensuring that the tracker can recover from errors easily.

The locality of model-based solutions can be specially problematic
for hand pose estimation because hand movements in real sequences
can be very fast (5 m/s translational and 300 deg/s rotational speed of
the wrist [16]), breaking the locality assumption.

2.2.3. Computational efficiency
The joint estimation of hand and object pose in [13] presents an-

other problem: computational load. The results shown with real se-
quences use eight cameras and the estimation time is 2 s per frame
after speeding-up computations on the GPU. Decreasing the number
of cameras (and therefore the quality) can speed-up the system up
to 3 Hz. In [12] a running time of 6 s per frame is reported, although
it is potentially parallelizable in a GPU.

In contrast, our discriminativemethod runs in real-time, implemented
in C++ on a single CPU core. This allows other processes to run concur-
rently either in other CPUs or in the GPU, which is valuable for applica-
tions in robotics or gaming.

2.3. Non-parametric hand pose estimation

Other hand pose estimation systems have used databases of hand
views in a non-parametric manner [7,8,11,17]. As discussed in the
Introduction, none of the three previously mentioned systems men-
tioned how to handle or take advantage from occlusions, and the ex-
periments showed hands moving freely without any object occlusion.
The main difference between our system and previous approaches is
that we exploit contextual information, such as objects to estimate
the pose of the hand.

In [11], the application of a specially designed glove circumvents
several problems associated with hand-pose estimation, making the
problem aswell as the approaches significantly different. An evolution
of that system can be found in [17], where the authors track the hands
without the need of gloves. However, they can only track a very limit-
ed range of hand poses and movements.

The system described in [7] performs the classification of human
hand poses against a database of 26 basic shapes. This is adequate
for their intended application, automatic sign language recognition.
In contrast, our method aims to perform continuous hand pose esti-
mation rather than isolated single-frame pose classification, which
means that we can exploit temporal smoothness constraints to disam-
biguate the estimation.

The work from [8] can be regarded as themost similar to our work.
However, like the two other approaches, they only take freely moving
hands into regard.

3. Probabilistic framework

We begin by explaining the notation used throughout the paper.
At a specific time instant t, let xt be the articulated hand pose and yt
the corresponding image observation.

Given a specific image observation yt, we wish to recover the asso-
ciated pose parameters xt generating the visual evidence. Formally we
will refer to the relationship between the pose and the image space as
the generative mapping f,

yt ¼ f xtð Þ: ð1Þ
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The task of pose estimation is to estimate the inverse of the gener-
ative mapping, either as a point estimate by modeling the inverse as a
function, as in [18], or by a probabilistic method by estimating p(xt|yt)
which have the potential to handle a multi-modal estimate.

In the case of hand pose estimation, this is known to be a highly
ill-conditioned problem, since the image features are ambiguous; the
same image observation ymight originate from awide range of differ-
ent poses x, making the likelihood densitymultimodal [19]. In order to
proceed, several different approaches have been suggested: genera-
tive models [20,12,13] which directly model f, approaches which rely
onmultiple views [9], or methods that exploit the temporal continuity
in pose over time [20,21].

In this paper, our objective is a highly efficientmethod for situations
wheremodel-based generative approaches are inapplicable due to their
computational complexity. Further, multiple views are not available in
most applications.1 We thus take the latter approach and exploit tem-
poral continuity to disambiguate the pose. The pose space is assumed
to be Markovian of order one, i.e., the pose xt depends only on the
pose at the previous time step xt − 1. The estimation task thus reduces
to find the pose xt that maximizes p(xt|yt, xt − 1) which decomposes as
follows,

arg max
xt

p xt j yt ; xt−1ð Þ ¼ argmax
xt

p xt ytj Þp xt xt−1j Þ:ðð ð2Þ

In this paper we take a non-parametric approach, with an implicit
likelihood model represented by a large database of images and their
corresponding poses, see Fig. 2. To perform inference, we use a trun-
cated approach where we approximate the distributions in Eq. (2)
using local models. As shown in Fig. 2, one time-step of inference is
carried out as follows:

• Given an image observation yt, a set of weighted pose hypotheses
Xt = {xti,wt

i} are drawn from the model as the nearest neighbors
to the image observation in feature space. These constitute a sam-
pled approximation of the observation likelihood p(xt|yt). This is
described in further detail in Section 5.1.

• From the weighted nearest neighbors of the previous time step, a
function g(xt) approximating the temporal model p(xt|xt − 1) is
computed. This is described in further detail in Section 5.2.

• Weights wt
∗i are now computed as wt

∗i = g(xti) ∗wt
i. The weights are

normalized to sum to 1 for all samples in Xt.
• The pose estimate is the most probable sample from the database
given the observation and the previous estimates. With our weighted
nearest neighbor approach, this is approximated by x̂ t ¼ xk

t , where
k = argmaxithbfwt

∗i.

In the next section we describe how the proposed implicit database
model is created and represented.

4. Non-parametric model representation

In order to obtain the non-parametric model, we need to acquire a
training data set of poses and associated image appearances (x,y) that
can be assumed to “well” represent the problem, i.e., that includes
poses that are expected to occur in a specific application domain. As
our approach is non-parametric, there is no explicit parametrization
of the image-to-pose mapping, as the relationship is implicitly pa-
rametrized by the database itself.

Generating such a database of natural images poses a formidable
challenge, as it would need to capture the variations in pose and
image appearance at a sufficient resolution in order to make accurate
pose estimation possible. However, with recent advances in Computer
Graphics we can use a rendering software such as Poser, which is
1 It should be noted that it is straight-forward in the present approach to employ im-
age evidence from several camera views, or alternatively from RGB-D imagery. This is
also discussed in the Conclusions.
capable of generating high-quality images of hands efficiently. The
idea of acquiring large sets of training data using this approach is not
new and has proved to be very successful for pose estimation [22,4].

The composition of the database used in this paper is motivated
by our research aim: understanding human interaction with objects
[23,24,14]. We select 33 different grasping actions according to the tax-
onomy presented in [15] (see one example in Fig. 3, left). Further, each
action is applied to a set of basic object shapes on which the grasp
would naturally be applied. Each action is then discretized into 5 differ-
ent time-steps. In order to make our approach view-independent we
generate samples of each instance from 648 different view-points uni-
formly located on the view-sphere. This results in a database of over
100000 instances,whichwe assume samples the problemdomainwell.

4.1. Data collection

Images are extremely high-dimensional objects, making it infeasible
both in terms of storage and modeling to use the original pixel repre-
sentation. In this paper we therefore apply a two stage feature extrac-
tion approach with the aim to remove variance not related to pose
from the image. In the first stage the hand is segmented from the
image using skin color thresholding [25]; this also removes the object
being grasped and the parts of the hand occluded by the object. This
stage assumes that the object is not skin-colored. The system should
be robust to objects with small skin-colored patches, since the effect
should be similar to segmentation noise as explored in Section 6.1.
Uniformly skin-colored objects are not considered in our approach.
This assumption can be relaxed in different ways that compromise cer-
tain features of our system and go beyond the scope of this paper, for
example model-based object tracking (but the system would lose the
ability to handle unknown objects) or movement-based object tracking
(under the assumption of the person and object being the only moving
parts of the scene). Having extracted the hand from the image, the
dimensionality is further reduced by representing the image as the re-
sponse to an image feature.

A large amount ofworkwithin Computer Vision has been focused on
developing different image features [26–28]. An ideal image feature
should be robust to segmentation errors, sensitive to non-textured re-
gions and fast to compute. We compare the performance of Histogram
of Oriented Gradients (HOG) [29] features and features based on dis-
tance transform [30] for different parameter settings. For a number of
different feature options, the following experiment is performed: The
feature is computed for every database entry. The entries are removed
from the database one at a time, and the 50 nearest neighbors (NN)
extracted from the database. The mean is taken of the Euclidean dis-
tance in pose space between all query entries and their found nearest
neighbor number 1, 2, …, 50. This distance is the same as the error of
a non-parametric pose estimation — a dense database and a good
feature would give small distances, while a sparse database and a
non-informative feature would give large distances. Fig. 4 shows the
cumulative mean pose error of nearest neighbor number 1–50, for 9
different feature alternatives.

Based on the result shown in Fig. 4, an 8 × 8 × 8 HOG feature is
selected, resulting in a 512 dimensional image representation, see
Fig. 3, right.

Our motivation is to exploit contextual information of the grasped
object when estimating the hand pose; the object contains a signifi-
cant amount of information about the pose (and vice versa). In a learn-
ing based framework, which assumes having a training data set which
describes the problem domain well, the natural inclination is that the
model would be limited to handle objects which are included in the
database. Such a model would have to be of a size that would render
it infeasible to use. However, in our model the object is removed (as-
suming it is not uniformly skin-colored). This means the occluding
shape of the object affects the representation while the internal
edges of the object do not, see Fig. 3. This representation can robustly
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Fig. 2. Schematic figure of the non-parametric temporal pose estimation framework. Given an image observation yt, a set of pose hypotheses Xt are drawn from the model. Each
hypothesis is given a temporal likelihood based on consistency with the hypothesis in the previous frame. The final estimate is the pose associated with the largest probability.
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be extracted from the image and is capable of generalizing over differ-
ent objects. Aswewill show in the experimental section, this sufficient-
ly models the correlation between hand and object allowing estimation
in scenarios with severe occlusion.

Having acquired a low-dimensional efficient representation y of
the image as described above, the database is completed by associat-
ing each image yi with its corresponding pose parameters xi. The pose
vector x is composed of the rotation matrix of the wrist w.r.t. the
camera and the sines of the joint angles of the hand.

5. Inference

As shown in Eq. (2), the conditional probability density over hand
pose xt is factorized into two different terms, an observation likeli-
hood p(xt|yt) and a temporal consistency model p(xt|xt − 1). Below
we discuss these two models in more detail, and show how the
Fig. 3. The left image shows an example from the database. The right image shows the
associated image feature descriptor y. Prior to extracting the feature descriptor the ob-
ject is segmented from the image, resulting in a “hole” at the corresponding position in
the descriptor. This encodes the correlation between pose and object in a more robust
manner compared to if the internal edges of the object would also contribute to the
descriptor.
pose xt is estimated from the observation yt using the implicit data-
base model.

5.1. Observation

The pdf p(xt|yt) is approximated by indexing into the database of
hand poses using the image representation yt, and retrieving the nearest
neighbors in the space spanned by the set of database features Y. Due to
the size of the database, an exact NN approach would be too computa-
tionally intensive. We therefore consider approximate methods. We
compare Locality Sensitive Hashing (LSH) [31] and Fast Library for
Approximate Nearest Neighbors (FLANN) [32], see Fig. 5, and decide to
use LSH in our experiments as it shows an attractive trade-off between
computational complexity and prediction accuracy.

LSH projects the feature space into multiple hash tables. The hash
tables are designed so that if two feature vectors are close in feature
space, their correspondent hashes are the same (or at least similar
in Multi-probe LSH [31]). The parameters required by this algorithm
are the number of hash tables to build L and the number of nearby
hashes to probe T. The rest of the parameters are optimized offline
for a required percentage of true K-nearest neighbors R. We set
those values to L = 10, T = 50 and R = 95% empirically. Each LSH
query yt returns an approximation to the K nearest neighbors (in our
case K = 500). Each retrieved KNN yti is associated with a weight wt

i

from a spherical Gaussian density,

wi
t ¼ N yit yt ;σyI

���
�
;

�
ð3Þ

with standard deviation σy is set by experimental evaluation. This en-
codes our belief that the image feature representation is locally smooth
and reduces the effect of erroneous neighbors from the LSH algorithm.

Each image feature in the database, yj is associated with a pose xj.
The poses {xti} corresponding to the NN {yti} can thus be retrieved. To-
gether with the weights, they form the set {xti,wt

i} which is a sampled
non-parametric approximation of p(xt|yt).
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error, but 8 × 8 × 8 HOG provides very similar performance with lower dimensionality. It is also interesting to note the importance of a sufficient number of bins, as it shows the
bad results obtained by 8 × 8 × 4 HOG.

560 J. Romero et al. / Image and Vision Computing 31 (2013) 555–564
5.2. Temporal consistency

As described in Section 3, the temporal consistency constraint
p(xt|xt − 1) is modeled as a parametric function g. It is used as a con-
ditional prior to reweight the sampled distribution {xti,wt

i} approxi-
mating p(xt|yt).

We assume that our model is getting observations densely enough
in time such that the trajectory with respect to both the pose and view
spaces varies smoothly. The naïve modeling approach would thus be
to penalize estimates by their deviation in pose space to the previous
estimate x̂ t−1. This model implicitly assumes that the temporal likeli-
hood distribution p(xt|xt − 1) is uni-modal. The uni-modality assump-
tion can introduce unnecessary errors in the prediction since x̂ t−1

might not be the best candidate due to ambiguities (several poses
can share a similar appearance) or estimation errors. A more sensible
approach is to make use of all the hypotheses Xt − 1 = {xt − 1

i ,wt − 1
∗i }

in the previous time instance and propagate them through time. We
can do so by modeling the conditional distribution p(xt|xt − 1) using
a kernel density estimation (KDE) approach [33], where the density
is modeled as a mixture of Gaussian kernels centered in xt − 1

i and
weighted by wt − 1

∗i . This enables the propagation of a potentially
0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Exact
FLANN
LSH

N
ea

re
st

 n
ei

gh
bo

r 
eu

cl
id

ea
n 

di
st

an
ce

 in
 H

O
G

 s
pa

ce

Database size as percentage of the full database size

Fig. 5. The plot shows the prediction error (left) and average query time (right) as a function
bor in the database. 10% of the original database is set aside for testing, resulting in a full dat
pared with an exhaustive search as baseline. The left plot shows that LSH performs slightly
linearly for the exhaustive search while the approximate methods being sublinear, and FLA
multi-modal distribution in time, making the temporal model signifi-
cantlymoreflexible and expressive, allowing us to represent temporary
ambiguities, resolving them further ahead in time.

As we will show in Section 6, having a strong temporal model
allows us to perform prediction in noisy scenarios where the image
observations are uncertain.
6. Experiments

We perform three sets of experiments using the proposed method.
First we compare our non-parametric approach to a baseline of other
state-of-the-art regression algorithms. In order to make an evaluation
in terms of a quantitative error this experiment is performed using syn-
thetic data where the joint configuration is known. Synthetic data also
allows us to control the amount of noise in the images. Both ourmethod
and the baselinemethods are evaluated in terms of robustness towards
noise in the image observations. In the second set of experiments we
evaluate our method in a qualitative manner on synthetic sequences
with added image noise. The third set of experiments is performed on
challenging real-world sequences.
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of database size (as percentage of the full database size) for finding the nearest neigh-
abase of around 90,000 instances. Two approximate methods, LSH and FLANN, are com-
better than FLANN in terms of accuracy. The right plot shows the query time increasing
NN being faster than LSH in absolute terms.
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Fig. 6. Pose estimation using the non-parametric method (PNP) in comparison to three different regression techniques (LSQ, RVM, GP). As a baseline, the true nearest neighbor pose
error (NN Pose) is shown, as well as the pose error of the nearest neighbor in feature space, not taking temporal information into regard (NN Feature). The plots show the average
error with increasing segmentation noise, normalized with respect to the true nearest neighbor pose error. The error measure in the left plot is the Euclidean distance in the pose
space spanned by x. The error measure in the right plot is proportional to the Euclidean distance in the space spanned by the 3D positions of all finger joints.

Fig. 7. Artificial corruption of the segmentation of the synthetic test data. The corrup-
tion is performed as follows: A partial segmentation is created by randomly removing
α percentage of the pixels from the segmentation. The morphological operators of ero-
sion and dilation then applied this partial segmentation in order to propagate the noise
over the image. Examples of increasing segmentation noise are shown.
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Videos of the real experiments can be seen at http://www.youtube.
com/watch?v=RzenV-ma8Io.

6.1. Baseline

We compare our method to a set of regression models. In specific,
we use Least Square Linear Regression (LSQ), the Relevance Vector Ma-
chine (RVM) [34] and Gaussian Process regression (GP) [35] to model
the mapping from input features y to pose x, approximating the likeli-
hood p(x|y) (no temporal information is included here). Each of these
models has previously, with significant success, been applied to pose
estimation [22,9,36] for both hands and full body pose.

All above models are based on a fundamental assumption that the
mapping f−1 from image to pose takes functional form; LSQ assumes
a linear form, while RVM and GP can model more flexible mappings.
We compare these three methods to the suggested approach on four
different synthetic sequences with varying degrees of added image
noise, see Fig. 7. Neither the poses nor the objects in the test sequences
are present in the database.

As can be seen in Fig. 6, left, the linear LSQ regression results in a
very large error indicating that the relationship between feature and
pose is inherently non-linear. The RVM and the GP are unable to
model the mapping and do in fact always predict the same pose:
the mean pose in the training data, irrespectable of image observa-
tion. In other words, this means that the appearance-to-pose map-
ping f−1 is under-constrained and does not take functional form.
However, the non-parametric approaches are capable to model in
such scenarios. From the results we can see that an exact nearest
neighbor estimate in the feature space (without temporal information)
results in aworse result compared to themeanpose distance in the data
set, while our approach performs significantly better — also indicating
that the mapping is non-unique. The dashed red line shows the results
of an exact nearest neighbor in the pose space and is therefore a lower
bound on the error of our method as it shows the resolution of the
database.

The norm in joint space is not easily interpretable in terms of qual-
ity of the prediction as it does not respect the hierarchical structure of
the hand, see Fig. 8. Therefore, the right plot of Fig. 6 shows the same
mapping results, but with an error norm in terms of finger joint 3D
positions. This shows even clearer how well our suggested method
performs. With very little noise we are close to the exact NN lower
bound, with increasing segmentation error asymptotically moving
towards the mean.
Note that 5% error corresponds to a very weak segmentation, see
Fig. 7. Further, our approach significantly outperforms the exact nearest
neighbor in feature space (without temporal information). This clearly
indicates how important temporal information is in order to disambig-
uate the pose.

To summarize, the results clearly show that the mapping from
image features to pose is both highly non-linear and non-unique
(multi-modal). This implies that it cannot be modeled using a func-
tional approach.

6.2. Synthetic

In order to evaluate the qualitative performance of our method in
a controlled scenario, we applied the model to image sequences with
a controlled noise level. The results are visualized in Fig. 9.

The estimated pose over the two sequences is accurate while the
associated object varies. This validates our assumption that objects
generalize over pose and provide important contextual information.

6.3. Real sequences

In order to show the performance of our method in a real world
manipulation scenario, we let three different subjects, two men and

http://www.youtube.com/watch?v=RzenV-ma8Io
http://www.youtube.com/watch?v=RzenV-ma8Io


(a) Original pose (b) Error 5.33 (c) Error 1.65 (d) Error 1.58

Fig. 8. Four different hand-poses are shown. The right-most image corresponds to the ground truth pose and the remaining images are estimates of the ground-truth. The estimates are
ordered according to decreasing joint angle error. This clearly exemplifies how badly joint angle error corresponds to the quality of the estimate. This is because the norm in joint space
assumes each dimension to contribute equally to the quality of the prediction. Therefore it does not reflect the hierarchical structure of the handwhere error higher up in the chain (such
as in the last two examples) effects the position of every joint further down the chain compared to the first prediction where the errors are concentrated closer to the finger tips.

Fig. 9. Qualitative results of our approach applied to synthetic data. The top and the fourth row shows the ground truth pose, the second and the fifth rows show the segmentation
from which the image features are computed. The segmentation has been corrupted by artificial noise with α = 0.5% as explained in Fig. 7. The third and last rows show the cor-
responding predictions from our system. The two grasping sequences are applied to two different objects, in the first sequence a book and in the second a ball. We show the pre-
dicted hand-pose but also the object that is associated with the specific pose in the database.
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one woman, manipulate three different objects. The objects are not
contained within the model. The results are shown in Fig. 10.

As can be seen from the results, our model is capable of accurately
predicting the pose of the hand. In each of the sequences the test
Fig. 10. Predictions of real world sequences. The three rows show three different sequence
sequences the subject is male while in the last one female. None of the objects exist in the
window highlighted. The remaining rows show the associated predictions. As can be seen,
hand shape and appearance is different from the database hand
model, while there is no observable degradation in performance, show-
ing that ourmodel is robust to different hands. Further, as neither of the
manipulated objects are represented in the model this further supports
s where different objects are manipulated by different humans. In the first and second
database. The first, third and fifth rows show the input images with the skin detection
the model correctly predicts the hand pose in each of the three different sequences.

image of Fig.�10


Fig. 11. The above sequences shows two challenging examples. In the left sequence a significant portion of the hand is occluded by the object. However, our proposed method still
manages to correctly estimate the pose of the hand. This clearly shows the strength of jointly estimating the object and the pose rather than seeing them as independent. The right
sequence is an example where the subject manipulates the objects in a rapid fashion in a highly non-linear manner. In such scenarios most dynamical models commonly applied in
pose estimation will over smooth the solution or be unable to predict at all due to being fundamentally auto-regressive approaches. Our model correctly predicts the pose in the two
first frames while the last estimate is erroneous. This error is an implication of the Markov one assumption in our temporal model which thereby is not capable of modeling inertia
and therefore is unable to resolve the ambiguity in the image sequence.
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the notion that grasps generalize over objects and that the objects' in-
fluence on the grasp provide important cues. This clearly shows that
our system is capable of exploiting such information.

A large portion of the dynamical models that have been proposed to
the problem of pose estimation are based on auto-regressive models
[37], which assume that the trajectory in time takes functional form.
Even though our dynamical model is parametric, it is based on the hy-
potheses from the non-parametric NNmodel. This means that it is con-
siderablymoreflexible and can recover frombad estimates in situations
where an auto-regressive model will fail. To highlight this strength we
tested our model to a set of highly challenging sequences with fast
non-linear motion and significant occlusion. This results in significant
errors in the visual features. In Fig. 11 the results clearly show the
strength of our approach, as it is able to track in such scenarios, and re-
cover from errors which are difficult to avoid.

Further, we would like to highlight the efficiency of our algorithm.
The method was implemented in C++ and runs at 10 frames/s on
one of the cores of a four core 2.66 GHz Intel processor. Its speed
makes it applicable in many different scenarios where pose estima-
tion is an important source of information, and integratable with
other computing-intensive algorithms.

7. Conclusions

We present an efficient non-parametric framework for full 3D
hand pose estimation. We show through extensive experimentation
that the proposed model is capable of predicting the pose in highly
challenging scenarios corrupted by significant noise or with rapid
motions. Further, our model is efficient and runs in real-time on stan-
dard hardware.

The fundamental contribution is a system capable of exploiting con-
textual information in the scene from the interaction between the hand
and a potential object. We show how this information can be exploited
in a robustmanner, making our system capable of generalizing the pose
over different objects. This enables the usage of a fast discriminative
method to scenarios where only expensive generative methods previ-
ously would have been applicable. We employ a multi-modal temporal
model, allowing us to resolve ambiguities through temporal consisten-
cy. Ourmodel could easily be extended to simultaneously estimate both
the hand pose and the object shape by appending the inference scheme
with a smoothness term with respect to object.

In futureworkwewould like to evaluate the possibility of exploiting
a better pose representation. This would make it possible to even fur-
ther strengthen the temporal model. In this paper we also assume
that the observation model can be modeled using a spherical Gaussian;
this encodes an assumption of equal importance of the joint angles. This
is unlikely to be true why we would like to explore a likelihood model
that better respects the correlation between quality of estimate in
joint space. This could potentially allow us to use additional hypotheses
for each estimate.
Another avenue of future work to investigate is the exploitation of
RGB-D data, which would improve both the hand-background seg-
mentation (currently based on skin color) and the feature representa-
tion of hand shape (currently HOG).

Finally, as noted in Section 2, generative and discriminative ap-
proaches have different merits. For applications requiring high accura-
cy, we therefore plan to run our discriminative hand pose estimator in
parallel with a more accurate but less robust generative tracking
method, using the discriminative estimates to (re)initialize the genera-
tive process.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.imavis.2013.04.002.
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