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Abstract

A structured-light technique can greatly simplify the
problem of shape recovery from images. There are currently
two main research challenges in design of such techniques.
One is handling complicated scenes involving texture, oc-
clusions, shadows, sharp discontinuities, and in some cases
even dynamic change; and the other is speeding up the ac-
quisition process by requiring small number of images and
computationally less demanding algorithms. This paper
presents a “one-shot” variant of such techniques to tackle
the aforementioned challenges. It works by projecting a
static grid pattern onto the scene and identifying the corre-
spondence between grid stripes and the camera image. The
correspondence problem is formulated using a novel graph-
ical model and solved efficiently using loopy belief propa-
gation. Unlike prior approaches, the proposed approach
uses non-deterministic geometric constraints, thereby can
handle spurious connections of stripe images. The effec-
tiveness of the proposed approach is verified on a variety of
complicated real scenes.

1. Introduction
Three-dimensional (3D) shape acquisition from images

has been one of the most important topics in computer vi-
sion due to its wide range of applications in engineering,
entertainment, visual inspection and medicine. It has espe-
cially been instrumental in digitizing and preserving archae-
ological artifacts. Although numerous 3D reconstruction
methods have been proposed for this purpose, there isn’t
one solution that is suitable for all sorts of archaeological
objects. Challenges include shadowy areas, immobility of
the object, complex geometry that prevents reaching cer-
tain areas, fragile nature of old artifacts, etc. Some of these
challenges can be alleviated by a hand-held scanner which
contains one or more cameras and possibly a laser emitter or
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Figure 1: (a) A bust, (b) the intersection network overlaid
onto the image, (c,d) reconstructions from two views.

a projector. It is capable of scanning objects when manually
swept over them.

Typically, a hand-held scanner works by continuously
registering a sequence of 3D views as they are acquired.
Obviously, the 3D acquisition has to be done very quickly
(ideally within a single frame) as the scanner is constantly
moving. Most commercial hand-held scanners use a single
laser beam for this purpose which can reconstruct only a
single slit per frame. In such systems, the scanner has to be
swept very slowly to capture all the intricate details. Also,
since the reconstruction is sparse, the registration step can
easily fail if the scanner moves too fast or makes an abrupt
motion.

In this paper, we propose using a grid pattern to han-
dle some of these challenges. This pattern allows for build-
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ing a “one-shot” system while still maintaining a dense re-
construction. We argue that previous approaches for grid
based systems are not adequate for dealing with scenes of
complex geometry. To alleviate this, we introduce a novel
probabilistic graphical model and show that it can deal with
such scenes. Combined with an online registration method,
we think that this method shows great potential for use in a
hand-held scanner.

2. Related Work
There exists several 3D reconstruction techniques such

as structured light, multi-view stereo vision and photomet-
ric stereo. Structured light techniques have been very popu-
lar in applications to archeology due to their accuracy, den-
sity and ease of use [9, 3]. Since a high variety of ap-
proaches have been proposed to this day, we will only dis-
cuss some of the most relevant ones here. A comprehensive
assessment is presented in [14, 1] by Salvi et al.

Most of the early work in structured lighting follow a
temporal approach: multiple patterns are projected consec-
utively onto the object and a camera captures an image for
each projected pattern. These methods require the object
to be perfectly still while the patterns are being projected.
Obviously, this is not acceptable for a hand-held device as
the scanner is constantly moving. If however, the number
of patterns to be projected is reduced to a single pattern,
then such methods become feasible. Although there are also
techniques that use a single but adaptive pattern [7], they re-
quire a video projector. In this study, we focus and review
methods that project a single static pattern in which case a
slide or laser projector would suffice.

Numerous one-shot patterns have been proposed so far.
One of the simplest approaches is to project a single slit,
typically using a laser beam. Although simple and easy to
implement, these approaches suffer from sparsity, i.e., only
a single slit is reconstructed at each frame. A natural ex-
tension is to project multiple slits or to have both horizontal
and vertical lines which form a grid pattern. In [12], Ru and
Stockman suggest using such a grid pattern. As for their
solution, the observed grid in the camera is matched to the
projected pattern by exploiting a number of geometric and
topological constraints. A major drawback is that the de-
tected grid points are numbered with respect to a reference
point, i.e. relative numbering. This necessitates that at least
a patch of the pattern be extracted perfectly since in the case
of undetected or spurious grid points, the algorithm will fail.
Although Proesmans et al. [11] present a more efficient so-
lution to the grid based systems, they suffer from relative
numbering also.

Another popular approach to obtain a dense reconstruc-
tion is the use of colors [18, 4]. These approaches typically
use complex illumination patterns and are highly sensitive
to noise and object texture. Therefore they require sophisti-

cated image processing and possibly color calibration [4].
Recently, Kawasaki et al. [5] proposed a two color grid

where vertical and horizontal lines are of different colors.
Unlike most other previous approaches, their method does
not rely heavily on image processing and is robust against
undetected grid points as it does not assume relative order-
ing. Their solution includes singular value decomposition
(SVD) on a large and very sparse matrix, which is numer-
ically instable. In [16], Ulusoy et al. propose a more sta-
ble solution with the help of a special grid. Both meth-
ods heavily exploit the coplanarity constraints that arise due
to the links between two grid points. However, such con-
straints are often violated because spurious links between
grid points are observed in complex scenes. It is very impor-
tant to note that even a single spurious link typically causes
the entire 3D solution to be incorrect, rendering both these
methods unsuitable for such scenes.

The primary contributions of this paper are: (1) formu-
lation of the problem using a novel probabilistic graphi-
cal model, (2) handling spurious connections resulting from
complicated scenes, (3) an efficient solution using loopy be-
lief propagation.

3. Overview of the Approach
In this paper, we present a structured-light approach con-

sisting of a projector, and a single color camera. Both are
calibrated with respect to a world coordinate system. The
projector projects a known grid pattern onto a 3D object.
The camera captures an image of the object illuminated by
the projected grid. This single image is used to determine
the depth information of points illuminated by grid stripes
observed by the camera. Producing the correct result de-
pends on being able to solve the so-called correspondence
problem, i.e., matching pairs of grid points and their images
need to be identified.

At first, finding correspondences might seem to require
an exhaustive search throughout the whole grid. However,
geometric constraints greatly simplifies the problem. First,
the projector-camera system adds epipolar constraints that
reduce the search space of each grid point to a single line,
i.e., the correspondence of the point can only come from one
of grid crossings along its epipolar line. This is explained
in Section 4.1.1. Second, the grid pattern discloses spatial
neighborhood information for all captured grid points. This
adds coplanarity constraints and topological constraints on
their correspondences, i.e., if two grid points are linked hor-
izontally on the captured image, then their correspondences
must abide to certain constraints. These are explained in
detail in Sections 4.1.2 and 4.1.3.

The problem is still challenging as difficulties arise, i.e.,
establishing correspondences can be easily tricked by a
complex scene that involves texture, occlusion, shadows,
sharp discontinuities, and dynamic change [7]. As a result,
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Figure 2: (a) A grid pattern, (b) two separate intersection
networks.

observed geometric constraints can be misleading which is
explained in Section 4.1.4. We present a novel probabilistic
graphical model in Section 4.2 that aims to formulate these
geometric constraints in a stochastic fashion. After build-
ing the graphical model, the solution is obtained efficiently
using loopy belief propagation.

4. Reconstruction using Grid Pattern

We assume that the camera and the projector are cali-
brated. The projector projects a grid pattern, composed of
horizontal blue stripes and vertical red stripes as shown in
Figure 2a, to the measured object and the camera is placed
to detect it. A simple image segmentation process in the
captured image, e.g., thresholding color channels, differ-
entiates between the horizontal and vertical stripes. The
stripes are then combined to form an input to the system
- a 2D intersection network. However, they, in general, may
not result in a single intersections network due to shadows,
occlusions and sharp depth discontinuities. An example de-
picting this is given in Figure 2b. Our approach solves the
correspondence problem for each intersection network in-
dependently. This section explains the steps for solving the
correspondence of a single intersection network. Without
loss of generality, the same steps can be applied to all inter-
section networks independently.

As for the notation used in this section, all image mea-
surements refer to the homogeneous normalized coordi-
nates because the calibration is known for both camera and
projector.

4.1. Labeling Problem

The grid pattern is a set of horizontal and vertical stripes.
Suppose those stripes have no width, then we can refer to
a stripe as a line π. The intersection of two perpendicu-
lar lines is a grid crossing s = (s1, s2, 1)t in the projector
image. Due to the projection, every grid crossing forms a

Figure 3: A point u and its epipolar line L(u).

light line and every grid line forms a light plane in 3-space.
These are reflected on the object surface and identified in
the camera image. The detection of such a light line is re-
ferred to as an intersection point u = (u1, u2, 1)t in the
camera image. The reflection of the light plane is referred
to as a set of links that connect the neighboring intersection
points. We treat the union of links and intersection points
as an intersection network.

A grid crossing s parameterizes both the horizontal line
πh and the vertical line πv it lies on. Therefore, a horizontal
and a vertical triangulation plane is defined by the the grid
crossing s. Given an intersection u, and its correspondence
s, all the points in the intersection network that are horizon-
tally and vertically linked can be triangulated using optical
ray-plane triangulation. Thus, in order to triangulate all the
points in an intersection network, we only need correspon-
dences s of intersection points u. Formally, we are looking
for a labeling function

f : ui → S, i = 1 . . . N (1)

where S = {s1, s2, . . . , sM}. N and M are the number of
all intersection points and grid crossings respectively.

4.1.1 Epipolar Constraint

Assuming that the world coordinate system is placed at the
optical center of the camera and ignoring intrinsic param-
eters, the equation of the projection of a 3D point p =
(p1, p2, p3)t onto the normalized camera image point u is
λu = p. We define another coordinate system at the optical
center of the projector for convenience and denote projector
image point as s. The relation between u and s is

µs = λRu + T (2)

where both λ and µ are unknown scalar values, R is the
rotation matrix and T is the translation vector which define
the coordinate transformation between the two coordinate
systems.



Figure 4: A typical scenario revealing coplanarity con-
straints and topological constraints

By eliminating the unknown scalars λ and µ from equa-
tion (2), we retrieve the epipolar line L of the camera point
u in projector image as

L(u) = {s : lts = 0} (3)

where l = T̂Ru , and T̂ is the matrix representation of the
cross product with T . This representation follows that the
Euclidean distance from a grid crossing s to the epipolar
line L(u) is

dist(s, L(u)) = |stL(u)|. (4)

Equation (3) says that a captured grid crossing u in the
camera image may correspond only to grid crossings on the
epipolar lineL(u) in the projector image as shown in Figure
3. However, a correspondence typically does not lie exactly
on the epipolar line due to imperfections in calibration pro-
cedure. Therefore, we define a threshold τ on the distance
dist(s, L(u)), and consider only the grid crossings s ∈ S ′
whose distance is smaller than τ . Note that the size S ′ is
dramatically smaller than that of S.

4.1.2 Coplanarity Constraint

A grid pattern consists of a set of discrete horizontal lines
πh
j , j = 1, 2, . . . ,H , and a set of discrete vertical lines
πv
k , k = 1, 2, . . . , V . The projection of a horizontal line πh

forms a horizontal plane Πh in 3-space. Similarly, a vertical
line πv forms a vertical plane Πv . The reflection of those
planes are observed by the camera. In the example of Figure
4, an intersection network of four camera points u1 to u4

are given. These points correspond to 3D-points p1 to p4,
and also to grid crossings s1 to s4. Consider the horizon-
tal link between u1 and u2. Notice that the 3D points p1

and p2 which generated u1 and u2 lie on the same plane
Πh

1 . This plane is originated by the horizontal line πh
1 in the

projector image. Therefore, the correspondences of u1 and

Figure 5: Challenges in finding correspondences, (I) an oc-
cluded stripe, (II) a spurious link.

u2 must lie on the horizontal line πh
1 . More generally, if

two detected intersections are linked in the camera image,
then their correspondences must be collinear in the projec-
tor image. If the link is horizontal, then their correspon-
dences must have the same j value, where the integer j is
the horizontal line identifier within the set of H horizontal
grid lines. Similar constraints can be derived for the vertical
case.

4.1.3 Topological Constraint

Again, consider the detected intersections u1 and u2 in the
example of Figure 4. These points are linked horizontally in
the camera image, and we know that their correspondences
must be collinear. There is more than that. In the physical
layout of the camera image points, u1 is on the left of u2.
This is due to the fact that the 3D point p1 is also on the left
of p2. Therefore, the correspondence of u1 must also be
on the left of the correspondence of u2. More generally, if
two intersections are linked in the camera image, then their
topological structure is preserved for their correspondences
in the projector image. If the link is horizontal, then the
correspondence for the intersection on the left must have
a lower k value than that of the intersection on the right,
where the integer k is the vertical line identifier within the
set of V vertical grid lines. Similar constraints can be de-
rived for the vertical case.

4.1.4 Spurious Connection

Difficulties in finding the correct correspondences may
arise, even when exploiting the geometric and topological
constraints. Typical complications are shown in Figure 5,
i.e., a depth discontinuity that is parallel to the grid lines of
the pattern may cause them to disappear in the camera im-
age, whereas a depth discontinuity that is not parallel to the
grid lines can let two different grid lines appear as a single
link in the camera image, namely a spurious link. There-



fore, observed links in the camera image may be misleading
for establishing correspondences.

A probabilistic graphical model is ideal for combining
the aforementioned geometric and topological constraints,
and also account for the non-deterministic nature of the
problem.

4.2. Probabilistic Graphical Model Formulation

We start by interpreting the intersection network in the
camera image as a graph G = (V, E). Each intersection
is a node v ∈ V and links between intersections are edges
e ∈ E . We distinguish between the set of horizontal and
vertical edges as Ehor and Ever where E = Ehor ∪ Ever.
Next, we define X = {X1, X2, ..., XN} to be N discrete
valued random variables, where each random variable is as-
sociated with a node in V . Random variable Xi represents
the correspondence of an intersection ui to a grid intersec-
tion s in the projector image. The labeling problem is to
assign a state (correspondence) to each random variable.

In this section, we show that we can exploit the geomet-
ric constraints of our system easily by modeling them with a
probabilistic graphical model. Furthermore, we realize that
solving the correspondence problem becomes equivalent to
finding the maximum a posteriori (MAP) configuration, for
which we propose a solution based on loopy belief propa-
gation [10].

We use the factor graph notation presented in [8] where
each random variable is depicted as a variable node and
functions of these variables are depicted as factor nodes, il-
lustrated as black squares. Edges connect variables to factor
nodes if and only if that variable is an argument of the func-
tion. We use the factor node and the function it represents
interchangeably.

For our graph, we have two types of factor nodes. Unary
factors connect to one variable node as they represent a
function of a single random variable. This function mod-
els the epipolar line constraint and is denoted as ψepipole.
Pairwise factors connect to two variable nodes as they are
functions of a pair of random variables. These functions
model both the coplanarity constraint and the topological
constraint due to vertical and horizontal links and are de-
noted as ψver and ψhor respectively. The joint probability
can be written as a product of the unary and pairwise fac-
tors,

p(X ) ∝
N∏
i=1

ψepipole(Xi)
∏

(i,j)∈Ehor

ψhor(Xi, Xj)

∏
(i,j)∈Ever

ψver(Xi, Xj)

(5)

Note that we have introduced factor nodes ψver and ψhor

for each e ∈ Ever and e ∈ Ehor respectively. An example
factor graph construction is given in Figure 6.

(a) (b)

Figure 6: (a) An example intersection network, (b) its cor-
responding factor graph. Note that some of the factor labels
were omitted for clarity.

The unary factors ψepipole(Xi = s) models the epipo-
lar constraint as described in Section 4.1.1. Note that as-
sociated with each random variable Xi we have a position
ui in the camera image. Correspondences sufficiently dis-
tant from the epipolar line get probability 0, i.e., they are
discarded entirely and the ones closer get a score based on
their distance to the line. More formally, we have:

ψepipole(Xi = s) =

{
1/dist(s, L(ui)), if dist(s, L(ui)) ≤ τ
0, otherwise

(6)
The pairwise factors ψhor and ψver model both the

coplanarity constraint and the topological constraints due to
the horizontal and vertical links in the camera image. The
coplanarity constraint as described in Section 4.1.2 states
that if two intersections are linked with a horizontal edge,
then the respective two random variables must be assigned
correspondences with the same horizontal line identifier,
otherwise the compatibility is 0. If this constraint holds,
then we check for the topological constraint which is de-
scribed in Section 4.1.3 using the function φ. ψhor is for-
mally defined in Equation 7. ψver can be defined similarly.

ψhor(Xi = s, Xj = s′) = (7){
φ
(
sgn(ui1 − uj1) . (idv(s)− idv(s′))

)
, if idh(s) = idh(s′)

0, otherwise

where idh(s) and idv(s) are functions that take a grid inter-
section s and return the associated horizontal and vertical
identifiers (described in Section 4.1.2) respectively. Note
that if ui is to the right of uj , the sgn function returns 1 and
the argument (idv(s)−idv(s′)) is passed to φ (see Equation
8). As seen in Figure 7, the φ is nonzero only when there
is a positive difference between the vertical line identifiers,
i.e., s is to the right of s′. If ui is to the left of uj , the sgn
function corrects the argument to φ by reversing it.



φ(α) =

{
exp(1− α), if α ≥ 1

0, otherwise
(8)

As seen in Figure 7, φ achieves its maximum when
α = 1. Notice that if φ were 0 for α > 1, then our model
wouldn’t be able to handle occlusions, i.e. undetected grid
points. We use an exponentially decaying function after
α = 1. This suggests that we do allow for large differences
in vertical line identifiers but we penalize so as to keep the
correspondences closer to each other. Note that a more for-
giving function (less sharp than the exponential) could also
be used.

Figure 7: The φ function.

4.2.1 Dealing with spurious connections

To deal with these spurious connections described in Sec-
tion 4.1.4, we introduce binary nodes bk, k = 1, ..., |E| for
each edge which are connected to the factor nodes as de-
picted in Figure 8a. We also define a prior λk for each bk.
When the bk = 1, we assume the edge between Xi and
Xj actually exists so we use the old compatibility measure
ψver or ψhor. However when bk = 0, we assume the edge
does not exist, in which case Xi and Xj become indepen-
dent as there is no function binding them. So, we assign
uniform compatibility to all possible pairs of values. This is
formalized in Equation 9.

ψ′hor(Xi, Xj , bk) =

{
ψhor(Xi, Xj), if bk = 1

c, otherwise
(9)

where c is a constant. Note that for our purposes, we do not
need to estimate bk. Thus, we can simply sum them out as
shown in Figure 8b. We end up with factor ψ̄hor defined in
Equation 10. One can derive ψ̄ver similarly.

ψ̄hor(Xi, Xj) = λkψhor(Xi, Xj) + (1− λk)c (10)

Figure 8: We sum over the binary edges as we do not need to
estimate them. Unary factors have been omitted for clarity.

4.2.2 Loopy Belief Propagation: Max-Product

The correspondence problem for our model is finding the
most likely assignment to each random variable, X̂ =
{X̂1, X̂2, ..., X̂N} = arg maxX p(X ), i.e., the MAP esti-
mation problem. If our graph did not contain cycles (loops),
we could have used the max-product algorithm [17] to get
an exact answer. This algorithm is a variant of the sum-
product algorithm [8] and belief propagation [10]. Unfor-
tunately, our graph contains loops in which case the MAP
estimation problem becomes NP hard and the max-product
is no longer exact. However, approximate solutions can still
be obtained by running it in an iterative fashion. Remark-
ably, max-product has been shown to be very effective in
practice and is widely used [15]. There exists also theo-
retical work on explaining the empirical success of max-
product [17].

Max-product is an iterative algorithm that works by pass-
ing messages in a graphical model [17]. Each message en-
codes the likelihood of a random variable using all the infor-
mation that has propagated throughout the graph. Although
both the sum-product and max-product algorithms can be
defined for factor graphs [8], the equations can be simplified
when the graph has only pairwise factors, i.e., functions of
up to two random variables. This is indeed the case for our
graph so we will present the algorithm in this form.

A message at iteration t is defined as follows:

mt
i→j(Xi) ∝ (11)

max
Xi

ψepipole(Xi)ψcomp(Xi, Xj)
∏

k∈N(i)\j

mt−1
k→i(Xi)

where ψcomp denotes either horizontal (ψ̄hor) or vertical
(ψ̄ver) compatibility depending on how Xi and Xj are con-
nected. N(i)\j means the neighbors of i except for j. After
passing messages around for t iterations, the MAP configu-
ration can be computed using the equation below.

X̂i = arg max
Xi

ψepipole(Xi)
∏

k∈N(i)

mt−1
k→i(Xi) (12)

5. De Bruijn Spaced Grids
It is known that when solving for correspondences us-

ing uniformly spaced grid patterns, one usually cannot
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Figure 9: (a) A comfortable frog, (b) the intersection network overlaid onto the image, (c,d) spurious connections.

obtain a confident solution and is left with ambiguities
[5, 16, 13]. These patterns are especially ill-suited for com-
plicated scenes with shadows, occlusions and sharp depth
discontinuities. In such scenes, the grid pattern usually gets
broken into multiple connected components as seen in Fig-
ure 2b. Most components contain a small number of inter-
sections and links in which case there is very little geomet-
ric information to solve for correspondences. This informa-
tion is usually not enough to obtain the correct solution.

A similar argument is made in [5] and irregular spac-
ings are suggested to disturb the uniformity. The authors
use a pattern with uniformly spaced vertical lines and ran-
domly spaced horizontal lines. This indeed increases the
robustness of the search, however, does not guarantee cor-
rect convergence for their case. Recently, De Bruijn spaced
grids were proposed in [16]. These are grid patterns with
spacings that follow a De Bruijn sequence. A k-ary De
Bruijn sequence of order n is a cyclic sequence containing
letters from an alphabet of size k, where each subsequence
of length n appears exactly once.

We generate grid patterns where both the vertical and
horizontal spacings between the stripes follow a De Bruijn
sequence. Thus, a 2D patch consisting of n vertical spac-
ings and n horizontal spacings and containing (n+ 1)2 grid
crossings is unique in the whole grid pattern. This makes
sure that there is a unique configuration for which the joint
probability is maximum, i.e., the correct MAP estimate is
unique.

6. Experiments and Results

We have implemented the proposed system using a 1024
x 768 DLP projector and a 1600 x 1200 CCD camera. Note
that since we project a static pattern, we could have used
a slide projector as well. We calibrated both the camera
and the projector using the Camera Calibration Toolbox for
Matlab [2]. The experiments were carried out under weak
ambient light.

For the graphical model parameters, we have chosen bi-
nary edge prior λk = 0.95 ∀k since we expect spurious
connections to happen rarely. As for the constant c in Equa-
tion 9, we have realized that a small nonzero value such as

c = 0.01 will suffice.
For the De Bruijn sequence parameters, we saw that

k = 5 and n = 3 gave good results empirically as almost
all detected patches were bigger than the needed size for
unique identification and since k is not very large, we did
not sacrifice much on reconstruction density. An example
pattern is given in Figure 2a.

To assess the correctness of our results, we used a
well established temporal structured lighting method [6] as
ground truth. We ran both our method and the temporal
method on static scenes and checked if all the intersections
we found were assigned their true correspondences.

First, we present results for a complicated object with
sharp depth discontinuities. The object and the intersection
networks we capture are given in Figures 9a and 9b. The
network (including the intersections on the background) is
composed of 6 connected components. Four of these com-
ponents contain less than 40 points. Figures 9c and 9d de-
pict the spurious connections outlined in bold red. The first
one is due to the sharp depth discontinuity between the head
and the arm. Similarly, the second one is caused by the dis-
continuity between the head and the belly. The third one is
more interesting: the foot gets linked to the background.

We have triangulated all the intersections and curves and
then used interpolation to fill in between curve segments
for visualization purposes. Our reconstruction results are
given in Figure 10. Notice that the method has been able
to handle the first two spurious connections: the arm, head
and belly are separated even though they were connected
to begin with. However, it had problems with the last one.
This is expected since there is not enough geometry around
the spurious link to force it to its correct position. In fact,
there are only 2 intersections on one side of connection as
seen in Figure 9d. Comparing with the ground truth, we saw
that only these 2 intersections (out of 1015) were assigned
wrongly. This corresponds to 99.8% correct assignment.

The next object is a bust of Michelangelo’s David shown
in Figure 1a. The captured intersection network is given
in Figure 1b. For this object, there are only two connected
components. The first component contains only 23 points
and spans the right arm whereas the second component con-



Figure 10: Two views of the reconstruction using the pro-
posed method.

tains 1227 points and spans the body, head, the left arm and
the background. There are 10 spurious connections inside
the second component alone. These spurious connections
link the head, the neck and the background. Since there is
sufficient geometry around the spurious connections, all of
them are solved correctly. In fact, for this object we have
100% correct assignment. The reconstructions are shown
in Figures 1c and 1d.

As advocated, loopy belief propagation worked excellent
in practice. Typically, it took about 10 iterations for conver-
gence and we haven’t experienced any cases where it did
not converge. In unoptimized MATLAB code, the running
time for a thousand grid intersections was about three min-
utes.

7. Conclusion and Future Work

In this paper, we have demonstrated a novel “one-shot”
method to reconstruct 3D objects and scenes using a grid
pattern. Unlike previous grid based approaches, our formu-
lation, which uses a powerful probabilistic graphical model,
can deal with scenes with complicated geometry. We have
shown its performance in two such examples. The next step
is to combine this system with an online registration method
and to replace the DLP projector we currently use with a
slide or laser projector in order to build a hand-held scan-
ner.
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