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Motivation

Transparent objects are
ubiquitous in domestic
environments

Relevant to domestic
service robots

Traditional local feature
approach inappropriate

Full physical model
intractable
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Non of these approaches addresses transparent
objects recognition in real-world conditions




Traditional Local Feature-based

clusteréenterl
Codebook:
clusterCenter N
: e " r1 W ‘ 1 Y1 clusterld;
6 ¢ : : —{quanhze}—> : : :
()O @ TN YN rN yn clusterldy
I
[histogram]
* Codebook clusters assume prototypical t
global patch appearance d

l

[ classifier ]




SIFT-type Descriptors
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 SIFT is popular choice for local feature computation f

* |t performs spatial binning of orientation quantized gradient information
* Unnormalized distribution over local gradient statistics

 We will use the a particular visualization as proposed for the related HOG method



The Problem of Transparency

Significant
variation in patch
appearance

Often gradient
energy is
dominated by
background




The Problem of Transparency

e Significant
variation in patch
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e Often gradient
energy is
dominated by
background

e ...but common
latent structure
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Key Idea: Local Latent Factorization

component,
Components:
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Local Additive Feature Model

Factor gradient descriptor
into

— Unknown non-negative mixture
weights

— Unknown mixture components

Regularize with sparsity
assumption

Advantages vs. e.g. vQ,
PCA:

— Additive model allows for
superimposed structures

— Appropriate model for factorizing
local gradient distribution

— No reliance on global patch
appearance



LDA-SIFT

Factor SIFT descriptor into latent components using LDA/sLDA [Blei03,Griffiths04,Blei07]:
* additivity is realized as multinomial mixture model
* sparsity assumption is implemented as Dirichlet priors

Graphical model Document = Patch
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LDA-SIFT

Factor SIFT descriptor into latent components using LDA/sLDA [Blei03,Griffiths04,Blei07]:
* additivity is realized as multinomial mixture model
* sparsity assumption is implemented as Dirichlet priors

Learnt mixture components
Graphical model
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Dirichlet prior
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_ Transparent _ o
Different from nroiections like PCA -> Inhibition effects



Comparison to previous SIFT/LDA

traditional approach:
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Transparent Visual Words

Average occurrence
on train

Latent component Occurrences on test
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Recognition Architecture
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Results: general vocabulary
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Results: sLDA
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Conclusion

Traditional local feature models (VQ, NN) are
poorly suited for transparent object recognition

Proposed additive local feature models can
detect superimposed image structures

Developed statistical approach to learn such
representations using probabilistic topic models

Sparse factorization of local gradient statistics
Encouraging results on real-world data



Future Work

e Different feature representations; extend model
in hierarchical fashion

* |Investigate addition of material property cues;
discriminative inverse local light transport models

* Explore benefits for opaque object recognition;
understand relationship to sparse image coding
as well as to biological motivated models



Thank you for your attention.



