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Abstract

The entropy measurement function is a central element of
decision forest induction. The Shannon entropy and other
generalized entropies such as the Rényi and Tsallis en-
tropy are designed to fulfill the Khinchin-Shannon axioms.
Whereas these axioms are appropriate for physical systems,
they do not necessarily model well the artificial system of
decision forest induction.

In this paper, we show that when omitting two of the four
axioms, every norm induces an entropy function. The re-
maining two axioms are sufficient to describe the require-
ments for an entropy function in the decision forest context.
Furthermore, we introduce and analyze the p-norm-induced
entropy, show relations to existing entropies and the relation
to various heuristics that are commonly used for decision
forest training.

In experiments with classification, regression and the re-
cently introduced Hough forests, we show how the discrete
and differential form of the new entropy can be used for
forest induction and how the functions can simply be fine-
tuned. The experiments indicate that the impact of the en-
tropy function is limited, however can be a simple and useful
post-processing step for optimizing decision forests for high
performance applications.

1. Introduction
While decision trees and forests of arbitrary depth can

express any possible concept in their domain, their inductive
bias is enforced by preferring less deep trees over deeper
trees. This bias finds its manifestation in the optimization
of the node split function h(v, θ), where v is a data vector
and θ is the vector of split parameters (this is the notation
of Criminisi and Shotton [8], which we will use throughout
this paper). Whereas many optimization strategies are pos-
sible to use, usually an entropy (impurity) measurement is
done for a set of training samples to split, and an informa-
tion gain (loss of entropy) is maximized for possible splits.

The Shannon entropy, being an important measure in in-

formation theory and physics, has been shown to uniquely
fulfill the Khinchin-Shannon axioms [15, 21]. Relaxing
the additivity axiom, it can be shown that the Shannon en-
tropy is a member of the more general family of Rényi en-
tropies, which are important for dynamical systems theory
(see, e.g., [4]). Dropping the additivity axiom completely,
the Tsallis entropy [24] becomes a sensible choice of gen-
eralized entropies [1], which has important applications in
modeling complex and dynamical systems as well.

The two generalized entropies have been developed by
carefully analyzing the requirements of the modeled sys-
tems and adjusting the axiomatic foundation of the en-
tropies accordingly. In this paper, we show that by relaxing
a second of the four axioms, a new meaningful family of
entropy functions arises that is adapted to the requirements
of decision forest induction. Furthermore, we derive the
differential equivalent of this entropy function family and
apply it for inducing regression and Hough forests [12].

The new family of entropy functions is continuously pa-
rameterized. This allows for simple fine-tuning of the en-
tropy function to the induction task. At the same time, they
only need 50% to 70% of the calculation time of the Shan-
non entropy.

To give the reader an impression of the influence on var-
ious machine learning tasks, we performed several experi-
ments: (1) we did five classification experiments on com-
puter vision datasets. (2) We performed two regression ex-
periments and, (3) combining both scenarios, we applied
the entropies for training Hough forests on one detection
and localization and two human pose estimation datasets.
Our contributions are as follows:
• we show that two of the Khinchin-Shannon axioms

are sufficient to model the requirements for an en-
tropy function for decision forest training. This leads
to a well-defined family of generalized entropies: the
norm-induced entropies.
• we introduce the induced entropy and analyze its prop-

erties,
• we demonstrate how this new entropy can be opti-

mized and be used to potentially improve scores on
various datasets.



2. Related work

There are two kinds of related work that will be dis-
cussed: related work with respect to the generalization of
entropies and the split evaluation functions for decision
forests.

2.1. Entropy generalization

For a system with W states with probabili-
ties p, the classical Shannon entropy is defined as
S(p) = −

∑W
i=1 pi · log2 pi

1. The first generalization
attempt is by Alfréd Rényi [20]. His parameterized
Rényi entropy preserves the additivity (but only for in-
dependent variables in general) and is equivalent to the
original Shannon entropy for q = 1. It is defined as
Rq(p) = 1

1−q log2

(∑W
i=1 pi

)
.

Constantino Tsallis developed the Tsallis entropy [24]
for non extensive systems: it drops the additivity axiom
(but maintains a so called pseudo additivity). It is defined
as Tq(p) = 1

q−1

(
1−

∑W
i=1 p

q
i

)
and is equivalent to the

Shannon entropy for q = 1 as well [24]. Comparisons to
the Shannon, Rényi and Tsallis entropies are included in
our experiments.

Sharma and Mittal developed the Sharma-Mittal en-
tropy [22]. Their generalization, and to the best of the au-
thors’ knowledge the most recent generalization of supra-
extensive entropy by Marco Masi [18], are the strongest
generalizations so far. Both of these entropies generalize
Tsallis and Rényi entropy, and hence do not guarantee ad-
ditivity. They both have two continuous parameters: this
deviates from our aim of developing an easy to optimize
entropy for decision forest induction.

All of the aforementioned approaches leave the first three
axioms untouched and, but the Tsallis entropy, make use of
the log function. We will show in this paper, that the setting
in which decision forests work can well be modeled by the
first two axioms and does not require to use the compute
intensive log.

2.2. Splitting criteria for decision forests

Yu-Shan Shih did a comprehensive review of splitting
criteria for classification trees in [23]. A more recent
overview is contained in [17].

For regression forests, considerably fewer split optimiza-
tion criteria are used, depending on the loss function used.
For the standard mean-squared error loss, usually the neg-
ative sum of variances is maximized (which can be writ-
ten as V (Σ) = −tr(Σ), where Σ is the covariance matrix

1We denote the various entropy functions with different function names
and depart from the classical entropy notion of H(p) for the sake of an
easier description. Additionally, we denote the entropy parameter for all
generalized entropies with q for a more consistent notation.

of the samples). Alternatively, the Least Absolute Devia-
tion (LAD) from the mean can be used, which is less vul-
nerable to outliers. For a comprehensive review up to the
year 2004, see [6]. Criminisi and Shotton use the differen-
tial Shannon entropy to estimate the quality of fit of linear
models in decision forests [8].

The use of Rényi and Tsallis entropies for decision forest
induction have been evaluated briefly in [19]. The evalua-
tion is done on three datasets with less than 80 samples. As
a result, the trees reach a depth of about three. We consider
this evaluation as not representative for computer vision and
extend it to datasets with up to 74000 samples with trees
of depth up to 20. Additionally, we explore the use of the
differential versions of these entropies for regression and
Hough forests.

3. Induced entropies for discrete systems
3.1. The Khinchin-Shannon axioms

The Khinchin-Shannon axioms (KS) for an entropy
functional H over the probabilities {pi}i=1,2,...,W are de-
fined as follows:

(KS1) H(p1, p2, . . . , pW ) is continuous with respect to all
of its arguments.

(KS2) H takes its maximum for the equiprobability distri-
bution pi = 1

W , i = 1, ...,W .

(KS3) H(p1, p2, . . . , pW , 0) = H(p1, p2, . . . , pW ).

(KS4) Given two systems described by two independent
probability distributions A and B,

H(A ∩B) = H(A) +H(B|A),

where H(B|A) =
∑W

i=1 pi(A)H(B|A = Ai).

KS4 is the additivity axiom. It is relaxed to hold only
for independent distributions in the Rényi entropy and to
pseudo-additivity for the Tsallis entropy (and a mix of
both relaxations for Sharma-Mittal and supra-extensive en-
tropies).

KS3 states that an additional state with probability 0 does
not change the entropy of the system. This is a possible, but
not necessary axiom in the context of decision forests: it is
known for the entire forest training what states are consis-
tently possible.

Moreover, arguably an entropy violating KS3 might be
more appropriate in some contexts than one abiding KS3: a
system with three states in a configuration with two equally
probable states and one with probability zero might have a
lower entropy (be more ordered) than a system with only
two equally probable states. The distinction becomes philo-
sophical: is a state with probability zero different from
‘no state’ by definition?



3.2. Definition

For the following definition, it is assumed that only KS1
and KS2 must hold. A function fulfilling these two axioms
must be continuous in all of its arguments, assuming its
maximum at the point of equiprobability.

A particularly interesting family of measures arises,
when using the negative sum of absolute distances to the
point of equiprobability. It can be parameterized with a
power parameter q:

Ñq(p) = −
W∑
i=1

∣∣∣∣pi − 1

W

∣∣∣∣q . (1)

In particular, all norm-induced metrics that measure the
distance to the point of equiprobability can now be used
as entropies. KS1 holds in this case, since a norm is by
definition uniformly continuous in all of its arguments. KS2
holds as well, because of the positivity and the zero vector
property. The p-norms can be used to rephrase Equation 1:

Ñq(p) = −‖p− e‖qq , (2)

where e is the point of equiprobability with ei = 1
W ∀i.

KS1 and KS2 still hold in this case, since taking the power
retains the zero vector, positivity and continuity properties
of the norm.

However, this entropy is always ≤ 0 and is = 0 at the
point of equiprobability. This can simply be avoided by
adding the minimal value as an offset, so that the entropy
is 0 at the points of perfect order, and otherwise > 0. This
offset must be the value at the lowest points. Defining u as
u1 = 1, ui = 0∀i > 1, this can be specified as

‖u− e‖qq . (3)

Combining Equations 2 and 3, the following formula de-
scribes the full induced entropy for discrete systems:

Nq(p) = ‖u− e‖qq − ‖p− e‖qq . (4)

We will refer to this entropy as ‘induced entropy’. You
can find a comparison of the characteristic plots of the in-
duced entropy and the Shannon, Rényi and Tsallis entropies
for a two state system in Figure 1. For the induced en-
tropy, it is impossible to recover the Shannon entropy due
to the use of the log function in its definition. The closest
fit (MSE) for a two state system is reached for the value
q ≈ 2.60068.

3.3. Properties

As argued before, KS1 and KS2 hold for all norm in-
duced entropies, and for Nq as well.

3.3.1 Concavity

For values of q ≥ 1, Nq is a strictly concave function. Re-
member that, by definition, the inducing norm is Schur con-
vex for q ≥ 1. Since that norm only occurs negative with an
exponent ≥ 1 in Nq , the result is a Schur concave function.

Concavity implies thermodynamic stability [18], hence
is a desirable property if the entropy should be applied on a
physical system.

For values of q ∈ ]0; 1[, the function is still well-defined.
For these values, the inducing term loses its property as
norm, because the triangle inequality does not hold any
more. However, since the term only occurs to the power
of q, the resulting function still defines a metric. For non-
physical systems, these values might still be of interest.

3.3.2 Lesche stability

Lesche stability is claimed to be a necessary condition for
an entropy to be a physical quantity [16]. There are some
disputes recently about whether it is really a necessary con-
dition or not [25]. Proving Lesche stability is a non-trivial
task and beyond the scope of this work. We note, however,
that the Tsallis entropy has been proven to be Lesche stable
by Abe [2] for positive values of q. As we will show in the
following Section 3.4, the induced entropy is equivalent for
q = 2 to the Gini measure and T2.

3.4. Equivalence of N2, the Gini measure and T2

The Gini measure of a discrete set of probabilities is de-
fined as

∑W
i=0 p

2
i . Nevertheless, in the context of decision

forests, it is used as an entropy-like function as 1−
∑W

i=1 p
2
i .

Curiously, in this form it is equivalent to the Tsallis entropy
for q = 2:

Tq(v) =
1

q − 1

(
1−

W∑
i=1

pqi

)
. (5)

Similarly, it can be shown that T2(v) = N2(v):(
1− 1

W

)2

+ (W − 1)

(
1

W

)2

−
W∑
i=1

∣∣∣∣pi − 1

W

∣∣∣∣2 =

1− 1

W
− 1

W
+

2

W

W∑
i=1

pi −
W∑
i=1

p2i =

1−
W∑
i=1

p2i . (6)

ForN2 KS3 holds (since it holds for the Tsallis entropy),
as well as pseudo-additivity. However, it is easy to find
counterexamples for other values of q: the properties do not
hold in general for norm induced entropies or Nq .
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Figure 1: Entropy values for a two state system (p2 = 1 − p1) for the Shannon entropy and generalized entropies. The
generalized entropies have been maximum normalized except for the leftmost plot.

3.5. Relation to the classification error

For q → 1 the Tsallis entropy converges to the usual
Shannon entropy. The induced entropy converges against
a measure similar to the classification error. The classifi-
cation error measures the ‘ratio of misclassification’ if it is
assumed that the system is in its most probable state. It is
defined as

C(p) = 1−max
i
pi. (7)

The induced entropy is proportional to the classification
error for W = 2 states: N1(p) = 2 · C(p). In general:

N1(p) = 2
W − 1

W
−

∑
i | pi<

1
W

(
pi −

1

W

)
+

∑
i | pi≥ 1

W

(
pi −

1

W

)
. (8)

For W = 2 classes and equiprobability, N1(p) = 1. For
W = 2 classes and all other cases, each of the two sums
runs over one element and it follows:

N1(p) = 1 +
∑

i | pi<
1
W

pi −
∑

i | pi≥ 1
W

pi =

1 +
(

1−max
i
pi

)
−max

i
pi =

2 ·
(

1−max
i
pi

)
. (9)

For W > 2, N1(p) is equal to the classification error as
long as only one state has a higher probability than 1

W . As
an example, the characteristic plot for a three state system
with the probability of state p3 = 0 is given in Figure 2.
As long as the system entropy gets closer to the point of
equiprobability (until p1 = 1

3 ), the entropy is rising. From
that point on, the city block distance to e does not change
any more. This results in a constant entropy value. The
contrary effect can be observed for p1 ≥ 2

3 .
This is an interesting, and maybe desired property for

some systems. In the context of decision forest induction,
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Figure 2: A comparison for classification error and 0.5 · I1
for a three state (!) system. p3 has probability 0 and p1 and
p2 = 1− p1 varies.

we recommend to use N1 only for few classes, but use it in
our evaluations for all datasets to give an impression of its
performance.

3.6. Implementation remarks

When using entropies for decision forest induction, they
are usually used inside of a gain calculation function, which
is merely a linear combination. The gain value itself is then
used inside an arg max function, e.g., for feature or thresh-
old selection.

Since the result of that function is invariant to scaling and
shifting, all of the aforementioned entropy families may be
used without their scaling and shifting terms. This form of
the induced entropy remains particularly compact and effi-
cient to evaluate:

N̂q (p) = −‖p− e‖qq . (10)

4. Differential induced entropy

The theory introduced so far applies to systems with dis-
crete states. Criminisi and Shotton have proposed to use
the differential Shannon entropy to evaluate splits for re-
gression forests [8]. Extending this idea, we introduce the
differential version of the induced entropy.



4.1. Definition

Developing the differential version of the entropy is
mathematically expressed as W → ∞. The first notable
property arises, when examining the normalization offset:

lim
W→∞

‖u− e‖qq =


∞ for q ∈ [0; 1[,

2 for q = 1,

1 for q > 1.

(11)

When examining the rest of the formula, a close corre-
spondence to the Tsallis entropy becomes apparent. With
lim

W→∞
1
W = 0, it becomes (compare to Equation 1):∫

|p(x)|q dx =

∫
p(x)qdx. (12)

The full differential induced entropy is thus defined as:

Nq[p] =

{
2−

∫
p(x)dx for q = 1,

1−
∫
p(x)qdx for q > 1.

(13)

This is close to the definition of the differential Tsallis en-
tropy:

Tq[p] =
1

q − 1

(
1−

∫
p(x)qdx

)
. (14)

For q > 1, both distributions are equivalent but for the fac-
tor 1

q−1 . For q = 1, the differential induced entropy be-
comes uninformative, since

∫
p(x)dx = 1.

4.2. The normal distribution

The most interesting probability distribution, for which
the induced entropy will be derived here, is the normal dis-
tribution. Assuming p(x) = N(x;µ, σ), the integral be-
comes:∫

N(x;µ, σ)qdx =
1
√
q
·
(√

2πσ
)−(q−1)

. (15)

Especially interesting for decision forest induction is the
multivariate case. It is required for multivariate regression
and for Hough forest induction, since the offset regression
is done two-dimensional. The formula for an n-dimensional
Gaussian with mean µ and covariance matrix Σ is:∫

N(x;µ,Σ)qdx =
1√
qn
·
((√

2π
)n√

|Σ|
)−(q−1)

,

(16)
where |.| denotes the determinant. Summing up, the dif-

ferential induced entropy for a normal distribution is defined
for q > 1 as:

Nq[p] = 1− 1√
qn
·
((√

2π
)n√

|Σ|
)−(q−1)

, (17)

where |Σ| is σ2 in the one-dimensional case.

Name Samples Classes Features Test size

chars74k [11] 74107 62 64 7400 (10%)

g50c [7] 550 2 50 500 (91%)

letter [3] 35000 26 16 8750 (25%)

MNIST [3] 70000 10 784 10000 (14%)

USPS [13] 9298 10 256 2007 (22%)

Table 1: Classification dataset characteristics.

5. Experiments
We conducted several experiments for the main applica-

tion areas of decision forests to evaluate how to best apply
the generalized entropy families2. In each experiment we
did a grid search using cross-validation with the Shannon
entropy to determine the decision forest parameters on the
training set. The grid contained the following values for
all experiments: depth 15, 20, 25; feature tests per node
7, 10, 15; thresholds tests per feature 4, 7, 10. Each score
was then determined by 10 training/testing runs with differ-
ent random seeds (except for the g50c and Boston housing
datasets, where due to their small size 250 runs were done).
The test set was always selected as by convention for the re-
spective dataset, if available. We designed this setup, since
we noted that the entropy family has none or hardly any ef-
fect on the parameters selected by the grid search, and it is
a realistic usage scenario.

5.1. Classification

For the classification setting, we selected five computer
vision datasets with varying characteristics. You can find
an overview in Table 1. Plots of the resulting scores for
the standard Shannon entropy and various parameters for
Rényi, Tsallis and induced entropy can be found in Figure 3.

As evaluation measure we used the F1-score3. It is a reli-
able measure even for imbalanced datasets, especially when
dealing with many classes. Each of the plot facets shows the
results for one dataset for each entropy. The Shannon en-
tropy has no parameter, hence is always visible as a straight
line. Rényi and Tsallis entropy are equivalent to the Shan-
non entropy for q = 1, so all three entropies have the same
value at this position.

We show the parameter range from q ∈ [1; 5]. Measure-
ments were taken at each step of 0.5 and are interpolated
by applying a Loess smoother, including the 95% confi-
dence interval indicated by a light gray background. We
only show results for this parameter range because of lim-
ited space, but note that they are representative. Only for
the g50c dataset we noted a peak for Rényi and Tsallis en-
tropy close to zero that is comparably high to the peak of
the induced entropy.

2Implementation: http://www.fertilized-forests.org.
3F1 = 2·precision·recall

precision+recall , the harmonic mean of precision and recall.

http://www.fertilized-forests.org
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Figure 3: Results of using the various entropies on the classification datasets.

Name Samples σ2 Features Test size

abalone [3] 4177 10.4 9 1044 (25%)

Boston housing [3] 506 84.4 14 51 (10%)

Table 2: Regression dataset characteristics.
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Figure 4: Results on the two regression datasets. Shannon
and Rényi entropy results, and induced and Tsallis entropy
results are equivalent in the visualized range.

As forest configuration, we used 100 trees, with varying
parameters as determined by the grid search. The largest ef-
fect is observed on the g50c dataset with an improvement of
about 1.9%. An improvement can be noted on all datasets.

5.2. Regression

Regression is, especially in computer vision, not as com-
mon as classification. Hence, we selected two non-vision
datasets to cover the topic (the characteristics can be found
in Table 2), and applied the differential entropies in a com-
puter vision setting using Hough forests (see Section 5.3).

For regression, we used the mean squared error (MSE)
as evaluation measure. You can find the results in Figure 4.
Rényi and Tsallis entropies are omitted in the plot, since
their results are equivalent to the ones of Shannon and in-
duced entropies respectively in the plotted range.

As forest configuration, we again used 100 trees with
varying parameters as determined by the grid search. On
both datasets, the scores could consistently improved by us-
ing the induced entropy. On the abalone dataset, the per-
formance of the Shannon entropy could consistently be out-
performed.

While the induced entropy is only defined for q ≥ 1,
Rényi and Tsallis entropies are also defined for values in
[0; 1]. Again, we checked the performance in these areas:
the Tsallis entropy performs better than the Shannon en-
tropy there, but does not reach the performance of the in-
duced entropy in the plotted range.

5.3. Hough forests

Hough forests have so far in literature only been used
with the regression optimization measure −tr(Σ). We ex-
tend the Hough forest approach by assuming a Gaussian
distribution of the offset vectors and evaluating its covari-
ance matrix with a ‘proper’ entropy measure. As evaluation
datasets, we used the Weizmann horse [5] dataset for detec-
tion and localization, and the Leeds Sports Pose (LSP) [14]
and FashionPose [9] datasets for human pose estimation.

As regression entropy, we used the induced entropy: the
results are equivalent to the ones of the Tsallis entropy in the
given range, Rq≥1 = S, and Rq<1, Tq<1 produced worse
scores in our former regression experiments. For classifica-
tion, we used the induced entropy as well. Remember that
N2 = T2, and R1 = T1 = S. By exploiting these equiv-
alences, we reach the most expressive set of results. Ad-
ditionally, we evaluated R2, R3 and T3 on the Weizmann
horse dataset with worse results than with the correspond-
ing Nq entropies.

5.3.1 The Weizmann horse dataset

The Weizmann horse dataset contains images of horses in
slightly varying scales. We chose a ‘single detection and
localization’ setting with a ROC area under curve evaluation
criterion. We used a forest configuration similar to [12].
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Figure 5: Results for applying the induced entropy for Hough forest training.

Standard Hough forest N2, N1.00001

Figure 6: Detections and Hough forest maps on the Weiz-
mann horse dataset [5].

Figure 5a shows the result matrix. The score for the de-
fault Hough forest configuration is located in the lower left
corner (0.901). The best scores (0.91) can be reached for
two entropy combinations with q values very close to 1 for
the regression entropy. We found that for the Hough forest
task, q values close to 1 produce the best results.

Figure 6 shows a comparison of results with standard
training and with training using the induced entropy with
the best performing parameters: the resulting maps are
denser and reach a higher concentration at their maxima.

5.3.2 The pose estimation datasets

We were able to improve the Hough forest training time of
three hours on a 700 CPU cluster reported in [10] to two
and a half hours on a 64 CPU cluster. Since the experiments
remained time consuming, we did five training/testing runs
for each configuration on both datasets.

As evaluation measure we used the normalized joint lo-
calization accuracy, as introduced in [9] at the threshold
0.1. This value measures the percentage of correctly lo-
calized joints with an allowed offset of up to 0.1 times the
upper-body size. This roughly corresponds to joints that
would be considered correct by a human evaluator.

Standard Hough forest

N2, N1.1

Figure 7: Comparison of Hough forest results on the Fash-
ionPose dataset [9]. Improved joint localizations are high-
lighted with a yellow marker.

The forest configuration was similar to [9]. Of the three
presented methods in that paper, we used the independent
joint regression method to directly show the performance
of the Hough forests on the data. We applied a clustered
pictorial structure model on the resulting probability maps
as described in [9].

The plots of the results for the two datasets can be found
in Figures 5b and 5c. On the LSP dataset, the performance
could be improved from 0.292 to 0.298 for five configu-
rations. On the FashionPose dataset, the score of 0.516
reached by the standard training method could be improved
to 0.519.

Figure 7 shows five poses estimated with classical and
modified Hough forests for a qualitative comparison. The
pictorial structure model profits of the denser result maps,
which mainly results in improved joint localization for the
extremities.



6. Conclusion
Reducing the Khinchin-Shannon axioms to the most nec-

essary ones for decision forest training, we introduced the
new ‘induced entropy’ in its discrete and differential forms.
We analyzed its properties and showed various connections
to the already established generalized entropies, namely the
Rényi and Tsallis entropy.

In three series of experiments on classification, regres-
sion and Hough forest tasks, we showed the influence of us-
ing the aforementioned three entropies compared with the
standard Shannon entropy. In all experiments we achieved
an improvement of scores.

While the experimental results do not allow to make a
clear recommendation on when to use a specific entropy,
we note that by using the induced entropy and exploiting its
equivalences to other entropies, a lot of the entropy search
space can be covered with few experiments. Applying this
method proved to be especially useful for the Hough for-
est experiments, where the search space contains discrete
as well as differential entropies.

Since we noticed that other forest parameters can largely
be optimized independently of the entropy type, we suggest
to use and optimize the induced entropy as post-processing
step after an optimization of forest parameters with the clas-
sical Shannon entropy. As we showed in our experiments,
significant improvements can be reached even for a low
number of samples of q ∈ [1; 5].
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