Discovering Object Classes from Activities
In
European Conference on Computer Vision,
Springer International Publishing,
volume 8694,
Lecture Notes in Computer Science,
pages 415-430,
September
2014.
Abstract:
▸
In order to avoid an expensive manual labeling process or to learn object classes autonomously without human intervention, object discovery techniques have been proposed that extract visual similar objects from weakly labelled videos. However, the problem of discovering small or medium sized objects is largely unexplored. We observe that videos with activities involving human-object interactions can serve as weakly labelled data for such cases. Since neither object appearance nor motion is distinct enough to discover objects in these videos, we propose a framework that samples from a space of algorithms and their parameters to extract sequences of object proposals. Furthermore, we model similarity of objects based on appearance and functionality, which is derived from human and object motion. We show that functionality is an
important cue for discovering objects from activities and demonstrate the generality of the model on three challenging RGB-D and RGB datasets.
Sending email...